APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY FORMS

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

August 31, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-3915 and your project: 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Submitted to:
GEOFON, Inc.
Attention: Tony For

Attention: Tony Ford

22632 Golden Spring Dr Ste 270 Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

Service ID #: 801-043915 Received: 08/02/04 Collected by: JJ/MM Extracted: N/A

Collected on: 08/02/04 Tested: 08/02-12/04 Reported: 08/20/04

Sample Description: Water from MW-14/21.
Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

					Analysis	llysis Result		
Component Analyzed	Method	Unit	PQL	DUPE-1-3Q04	EB-1-8/2/04	MW-14-1	MW-14-2	
				04-03915-1	04-03915-2	04-03915-3	04-03915-4	
Dilution Factor		-		1	1	1	1	
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	< 4	9.3	
VOLATILE ORGANIC COMPOUNDS								
Dilution Factor				1	1	1	1	
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
N-BUTYLBENZENE	524.2	$_{\mu} g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	2J	< 10	< 10	
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
DICHLORODIFLUOROMETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.3J	0.3J	
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-3915 \$\daggerapsis\$ Page: 1 of 9

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	DUPE-1-3Q04	EB-1-8/2/04	MW-14-1	MW-14-2
				04-03915-1	04-03915-2	04-03915-3	04-03915-4
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	0.5J
TOLUENE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	4.6
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-3915 h Page: 2 of 9

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	
Component Analyzed	Method	Unit	PQL	MW-14-3 04-03915-5	MW-14-4 04-03915-6	MW-14-5 04-03915-7
Dilution Factor				1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	7.3	8.7	< 4
VOLATILE ORGANIC COMPOUNDS		,				
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.4J	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-3915 h Page: 3 of 9

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	ılt
Component Analyzed	Method	Unit	PQL	MW-14-3	MW-14-4	MW-14-5
				04-03915-5	04-03915-6	04-03915-7
HEXACHLOROBUTADIENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}$ g/L	10	< 10	< 10	< 10
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	< 1
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
				Analys	is Result	

					Analysis Resul	t
Component Analyzed	Method	Unit	PQL	MW-21-1	MW-21-2	MW-21-3
				04-03915-8	04-03915-9	04-03915-10
Dilution Factor				1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	5.1	< 4	< 4

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-3915 ∜ Page: 4 of 9

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Rest	ılt
Component Analyzed	Method	Unit	PQL	MW-21-1 04-03915-8	MW-21-2 04-03915-9	MW-21-3 04-03915-10
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu }^{ m g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	μg/L	10	< 10	< 10	<10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.8	< 0.5	0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.6	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}$ g/ $ m L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.5	0.6
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}$ g/ $ m L$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-3915 h Page: 5 of 9

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Re	esult
Component Analyzed	Method	Unit	PQL	MW-21-1	MW-21-2	MW-21-3
				04-03915-8	04-03915-9	04-03915-10
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}$ g/ $ m L$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.5	2.9	2.7
TOLUENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	4.2	1.0	1.4
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
				_ .	·	
				Analys	is Result	
Component Analyzed Method Unit	PQL	, [MW-21-4	MW	-21-5	TB-1-8/2/04
			00015			

					Analysis Result	
Component Analyzed	Method	Unit	PQL	MW-21-4	MW-21-5	TB-1-8/2/04
				04-03915-11	04-03915-12	04-03915-13
Dilution Factor				1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	-

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 N 04-3915 h Page: 6 of 9

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resul	
Component Analyzed	Method	Unit	PQL	MW-21-4	MW-21-5	TB-1-8/2/04
				04-03915-11	04-03915-12	04-03915-13
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	2.9	3.7	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	1.2	1.7	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 № 04-3915 ឯ Page: 7 of 9

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				•		•	Analysis Res	ılt
Component Analyzed			Method	Unit	PQL	MW-21-4		TB-1-8/2/04
						04-03915-1	11 04-03915-12	04-03915-13
P-ISOPROPYLTOLUEN	E		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORII	ЭE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-METHYL-2-PENTANO	ONE (MIBK)		524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
METHYL-T-BUTYL ET	HER (MTBE)		524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	< 1
NAPHTHALENE			524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE			524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
STYRENE			524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLORO	ETHANE		524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLORO	ETHANE		524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHEN	1E		524.2	μg/L	0.5	4.5	8.5	< 0.5
TOLUENE			524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZ	ENE		524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZ			524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHA			524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHA			524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE			524.2	μg/L	0.5	0.3J	0.5	< 0.5
TRICHLOROFLUOROM	ETHANE		524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROF			524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRI		IANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZ			524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZ			524.2	με/L	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE			524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE			524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE			524.2	μ g/ L	0.5	< 0.5	< 0.5	< 0.5
, 1 11111111111111111111111111111111	- · · · · · · · · · · · · · · · · · · ·		021.5	μ6/ 13				
						Ar	nalysis Result	
Component Analyzed	Method	Unit	Р	QL	EB-1-8		MW-14-1	MW-14-2
-				•	04-039			04-03915-4
CHROMIUM (VI)	7196	mg/I	, 0	.01	< 0.4	 01	< 0.01	< 0.01
Dilution Factor		O,			1		1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$).1	0.5		12.8	6.9
		μο, –						
····						Aı	nalysis Result	
Component Analyzed	Method	Unit	P	QL	MW-		MW-21-1	MW-21-2
-				•	04-039			04-03915-9
CHROMIUM (VI)	7196	mg/I	. o	0.01	< 0.	01	< 0.01	< 0.01
Dilution Factor		0,			1		1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$		D.1	5.5		5.3	7.8

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 № 04-3915 ¼ Page: 8 of 9

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				-	Analysis Result	
Component Analyzed	Method	Unit	PQL	MW-21-3 04-03915-10	MW-21-4 04-03915-11	MW-21-5 04-03915-12
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	8.2	6.9	6.0

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 DO

J: Reported between PQL and MDL.

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-3915

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-14/21./4-12812

For GEOFON, Inc.

APCL Service No: 04-3915

1. Sample Identification

The sample identifications are listed in the following table:

 GEOFON, Inc. Sample ID	APCL Sample ID
MW-14-5	04-03915-7
MW-14-4	04-03915-6
MW-14-3	04-03915-5
MW-14-2	04-03915-4
MW-14-1	04-03915-3
DUPE-1-3Q04	04-03915-1
MW-21-5	04-03915-12
MW-21-4	04-03915-11
MW-21-3	04-03915-10
MW-21-2	04-03915-9
MW-21-1	04-03915-8
EB-1-8/2/04	04-03915-2
TB-1-8/2/04	04-03915-13

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds),

7196 (Chromium (VI)),

314.0 (Perchlorate, low level),

200.8 (Chromium by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium percent difference in the Serial Dilution Test performed on the sample MW-21-4 was 18%, outside of 10% criteria. However, the recovery in Post Digestion Spike test was within control limits.

CADHS ELAP No: 1431 APCL Case Narrative: 04-3915 08/25/2004

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova
Associate QA/QC Director
Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-3915 08/25/2004 Page: 2 401

	GEOFON
=	<u>_=</u>

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

MW-14

22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455 LAB COORDINATOR'S FAX LABORATORY CONTACT LABORATORY SERVICE ID LAB COORDINATOR'S PHONE Henry Chan 409 590 1498 909 396 1455 GEOFOL PROJECT NUMBER LABORATORY PHONE RECIPIENT NAME TODU FOL 909 590 1828 ンドド 14 920 8729 CITY. STATE AND ZIPCODE PROJECT ADDRESS Diamond Pasadena. 4800 COIL COLORE DE PROJECT MANAGER'S
PHONE 909 396 762 909 396 1455 # of Cont Comments Sample Identifier HW-54-5 B. 2.0 MW-14-4 $\overline{11}$ 1240 MW-14-3 320 MW-14-2 1343 MW-14-1 2-3004 HU None 9 10 COOLER TEMPERATURE UPON RECEIPT COURIER AND AIR BILL NUMBER. SAMPLES COLLECTED BY SAMPLE'S CONDITION UPON RECEIPT X2001510

Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager

I≣	=							C	HA]	IN-	OF-	CUS	TO	DY	RE	CC	RD	1			LA	BORATO	RY COP	Υ
	<u> </u>	GE	R P O	FI A	T E D				ı	M	W	- 2	1							D	1/4	/		
		22632 GOLDE DIAMOND BAI	N SPRING	S DR., S	UITE 270		396-145	55] 1	\cup	Z	1							<i>O</i> ,	// / 			
_	ON's LAB CO	ORDINATOR	LAB COO	RDINATOR'S	PHONE		LAB COO	RDINATOR'S F		عدار د		LABO	CATORY!	SERVICE	סו	LABORA	TORY CO	NTACT	<u>ا</u> ــــ	MAIL REPO		PANY NAME)		
\mathcal{Z}	<u>OLL</u>	Bulmu	90	1 500	16 70	ا ک مام	90	9 39	ECT NUM	MBER	<u> </u>	LABOI	RATORY I	PHONE	+	1)C	ONY FA	7	ha. 498	RECIPIENT	NAME _	- 1 7 M		
2	2000	<u>.හ- ජග</u> ගේ	HÜ	LOCATION - 2					128	12	_	909	590	o 18.	28	909	5	<u> </u>	448	PECIPIENT ON U	t	<u> </u>		<u></u>
PROJ	ECT CONTA	Jones_	PROJECT	PHONE NUM	872	9	PROJECT	<u>9</u> 39	la I	45	5			ADDRES!	5			_	e.	7.2637	7. 6	Mrn S	كصونام	D., 502
PROJ	ECT ADDRE	SS	CITY, ST/	ATE AND ZIP	CODE	1						Lorry	STATE A	ND ZIPCO	ODE (1) I (CITY. STAT	E AND ZI	PCOPE P	0	CA 9176
48	<u>00 E</u>	ar (aan b		MANAGER!	ena,	CA	<u> </u>	MANAGER'S	يلاح	<u>W</u>	$Z\Gamma V$	100	w	<u> </u>	5	}	IJ.) <u> </u> (men	ld L	m, c	_H 71/6
PROJ	ECT MANAC	Fold				2662	90	093	9(,	14	55	1	.e&		16		X	/	/,	///				
Г	100	<u> TOKEI</u>	1	i		/ /	/	- (sb/		7	.e>/	7 ×	ialyses	9/	$\mathcal{Y}_{\mathcal{I}}$			/	/,					
Item		Sample Identifier	r	1/3	strix D	ate (1	17. O.	eserved to	Cont	C \	ENC X	1/4					/	/	/,			Commo	ents	
-	HW	5-21-5		W	81.0	1	मिटा	5	fiii	7	Jorma		J	1					Ĺ					
1		21 (1		N,	+ -	0%-	T		+	<u></u>		1	\ <u>\</u>	<u> </u>	<u> </u>		+	+		MS IMS	712			<u> </u>
2		- 21-4				0826		10			\perp	X	X	X	Х		.		_					
3	HW	- 21-3				0908		5				X	X	X	人				-					
4	Mu	5-51-5				0932		1	\prod			X	X	1	X				-					
5	Mu	5-21-1				1002						X	X	X	X			ı						
6	_	=B-1-8/2	/o4			0919						X	X	X	X					201				
7		TB-1-8/2	104		++			1		_		×							4	391				
<u> </u>	┼			*1	4		A	+	┿	'	4	-	+-	\vdash				\dashv						
8				1				<u> </u>	L	_4	7_	<u>n.</u>	1/6	Lu	<u> </u>						_			
9		·=·		-				/		ľ	8.	2.	by		i								_ 	
10	ļ							_	1-			-	<u> </u>					_	.	_				. <u>.</u>
5A)	MPLES COLI	ECTED BY 334	нн	<u> </u>	COURI	ER AND AIR BI	LL NUMBER	<u></u>							J			١.		COOLER TEMPERAT				
		RELINQUISHED BY			·		ECEIVED E	ЗҮ		19	DATE 2-0		ИE 2-7						SAMP	LE'S CONDITION UPO	ON RECE	IPT		
1	1	V-1480		 	++4	Mh		ag.pen.			2-09			 -										
<i>-</i>	ma	we then	~~	<u>/</u>	1	<i>7-12-2</i>																		
\vdash		<u>.</u>			\neg											-								

Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

August 31, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-3925 and your project: 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Submitted to: GEOFON, Inc.

Attention: Tony Ford

 $22632\ Golden\ Spring\ Dr\ Ste\ 270$

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

Service ID #: 801-043925 Collected by: JJ/MM

Collected on: 08/03/04

Received: 08/03/04 Extracted: N/A

Tested: 08/03-12/04 Reported: 08/16/04

Sample Description: Water from MW-18/MW-7 Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

					Analysis Resul	t
Component Analyzed	Method	Unit	PQL	EB-2-8/3/04 04-03925-1	MW-7 04-03925-2	MW-18-2 04-03925-3
Dilution Factor		<u></u>		1	100	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	3,760	< 4
VOLATILE ORGANIC COMPOUNDS		·				
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	58.0	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	16.2	< 0.5
CHLOROMETHANE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	5.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 № 04-3925 ឯ Page: 1 of 5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	EB-2-8/3/04	MW-7	MW-18-2
				04-03925-1	04-03925-2	04-03925-3
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu} { m g}/{ m L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	15.0	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	6.3	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	5.0	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-3925 h Page: 2 of 5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	sis Result	
Component Analyzed	Method	Unit	PQL	MW-18-3 04-03925-4	MW-18-4 04-03925-5	MW-18-5 04-03925-6	TB-2-8/3/04 04-03925-7
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	6.4	13.9	< 4	-
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	μg/L	10	< 10	<10	< 10	< 10
CARBON TETRACHLORIDE	524.2	μg/L	0.5	0.7	4.0	< 0.5	< 0.5
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}^{\rm g/L}$	0.5	1.2	0.9	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}^{\rm g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	με/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	με/ L μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	με/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-3925 h Page: 3 of 5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	sis Result	
Component Analyzed	Method	Unit	PQL	MW-18-3	MW-18-4	MW-18-5	TB-2-8/3/04
				04-03925-4	04-03925-5	04-03925-6	04-03925-7
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	<10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.4J	1.2	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.7	1.2	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
${\tt 112TRICHLORO-122TRIFLUOROETHANE}$	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

				Analysi	s Result
Component Analyzed	Method	Unit	PQL	EB-2-8/3/04	MW-7
				04-03925-1	04-03925-2
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01
Dilution Factor				1	1
CHROMIUM	200.8	$_{\mu\mathrm{g}}/\mathrm{L}$	0.1	0.35	8.7

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-3925 b Page: 4 of 5

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498 **APCL Analytical Report**

					Analysis Result	;
Component Analyzed	Method	Unit	PQL	MW-18-2 04-03925-3	MW-18-3 04-03925-4	MW-18-4 04-03925-5
CHROMIUM (VI) Dilution Factor	7196	mg/L	0.01	< 0.01 1	< 0.01 1	< 0.01
CHROMIUM	200.8	$_{\mu \mathrm{g/L}}$	0.1	4.6	9.3	5.4

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

170 /

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-3925 ↓ Page: 5 of 5

J: Reported between PQL and MDL.

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-3925

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-18/MW-7/4-12812

For GEOFON, Inc.

APCL Service No: 04-3925

1. Sample Identification

The sample identifications are listed in the following table:

	GEOFON, Inc. Sample ID	APCL Sample ID	
-	MW-18-5	04-03925-6	
	MW-18-4	04-03925-5	
	MW-18-3	04-03925-4	
	MW-18-2	04-03925-3	
	MW-7	04-03925-2	
	EB-2-8/3/04	04-03925-1	
	TB-2-8/3/04	04-03925-7	

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds),

7196A (Chromium (VI)),

314.0 (Perchlorate, low level),

200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

None

CADHS ELAP No: 1431 APCL Case Narrative: 04-3925 08/31/2004

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova
Associate QA/QC Director
Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-3925 08/31/2004 Page: 2 201

GEOFON

CHAIN-OF-CUSTODY RECORD

MW-18+MW-7

LABORATORY COPY

22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455 LAB COORDINATOR'S FAX MAIL REPORT (COMPANY NAME) LAB COORDINATOR'S PHONE LABORATORY SERVICE ID GEOFOL 909 396 1455 LABORATORY PHONE 969 596 1828 PROJECT LOCATION PROJECT PHONE NUMBER
914 920 8729 PROJECT FAX PROJECT ADDRESS Pasadena, CA PROJECT MANAGER'S
PHONE 9093967662 909396 # of Cont. Comments Sample Identifier B-3 - 04 MW-48-6 Normal None MNO3 MW-18-4 1050 1114 Hw-7 0839 1107 HU TB-2-8/3/04 8 9 10 SAMPLES COLLECTED BY 33 + MM COOLER TEMPERATURE UPON RECEIPT COURIER AND AIR BILL NUMBER: SAMPLE'S CONDITION UPON RECEIPT RELINOUISHED BY RECEIVED BY 1230 1315 Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

August 31, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-3938 and your project : 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Submitted to: GEOFON, Inc. Attention: Tony

Attention: Tony Ford 22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

Service ID #: 801-043938 Collected by: JJ/MM/TM Collected on: 08/04/04 Received: 08/04/04 Extracted: N/A Tested: 08/04-12/04

Reported: 08/17/04

Sample Description: Water from MW-20

Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

		TY .	D. ~ ~		Analysis Resul	
Component Analyzed	Method	Unit	PQL	EB-3-8/4/04 04-03938-1	MW-20-1 04-03938-2	MW-20-2 04-03938-3
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	0.41	10.5	0.87
Dilution Factor		,		1	1	1
PERCHLORATE	314.0	$_{\mu} { m g}/{ m L}$	4	< 4	< 4	< 4
VOLATILE ORGANIC COMPOUNDS		•				
Dilution Factor				I	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.7
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}$ g/ $ m L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-3938 ឯ Page: 1 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resul	lt
Component Analyzed	Method	Unit	PQL	EB-3-8/4/04	MW-20-1	MW-20-2
				04-03938-1	04-03938-2	04-03938-3
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu} { m g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.6	0.6	1.2
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu} { m g}/{ m L}$	1	<1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu} { m g/L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}$ g/ $ m L$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-3938 Page: 2 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					sis Result		
Component Analyzed	Method	Unit	PQL	MW-20-3	MW-20-4	MW-20-5	TB-3-8/4/04
•			·	04-03938-4	04-03938-5		04-03938-7
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	-
Dilution Factor		Ο,		1	1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	12.7	6.2	6.8	-
Dilution Factor		,		1	1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	< 4	-
VOLATILE ORGANIC COMPOUNDS		•					
Dilution Factor				1	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}{ m g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 C1-0470 D003 № 04-3938 b Page: 3 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					sis Result			
Component Analyzed	Method	Unit	PQL	MW-20-3	MW-20-4	MW-20-5	TB-3-8/4/04	
				04-03938-4	04-03938-5	04-03938-6	04-03938-7	
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.8	1.2	0.9	0.5	
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1	<1	<1	
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10	
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.4J	< 0.5	
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.3J	< 0.5	< 0.5	< 0.5	
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-3938 h Page: 4 of 4

J: Reported between PQL and MDL.

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-3938

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-20/4-12812

For GEOFON, Inc.

APCL Service No: 04-3938

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample	ID APCL Sample ID
MW-20-5	04-03938-6
MW-20-4	04-03938-5
MW-20-3	04-03938-4
MW-20-2	04-03938-3
MW-20-1	04-03938-2
EB-3-8/4/04	04-03938-1
TB-3-8/4/04	04-03938-7

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds),

7196A (Chromium (VI)),

314.0 (Perchlorate, low level),

200.8 (Chromium, Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) SW8260B:

Methylene Chloride in the amount of 1.1 ug/L was detected in the Method Blank of batch 04G3136, exceeding the 1 ug/L reporting limit. Similar levels of Methylene Chloride were also detected in the associated field samples, due to lab contamination.

(2) 200.8:

Chromium in the amounts of 0.145 ug/L and 0.103 ug/L was detected in the CCB associated with the field samples. However, Chromium amounts in the field samples significantly exceeded the reporting limit.

CADHS ELAP No: 1431 APCL Case Narrative: 04-3938 08/31/2004 Page: 1 300

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-3938 08/31/2004

	= CEOFON!
	GEOFON
=	_ _ ,

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

0115

22632 GOLDEN SPRINGS DR., SUITE 270

DIAMOND BAR CA 01765 4 (000) 396-7662 • FAY (900) 396-1455

MW-20-

	DIAMOND BA	H, CA 9176	5 • (909) :	J90-/662	2 * FAX (909				-																
GEOFON'N LAB COOF	RDINATOR		DINATOR'S				RDINATOR'S		,		LABOR	ATORY	SERVICE	10	LABORA		_			MAIL REPO			,		
Scott	Buhner	909		674	062	40	930	16/	<u> 455</u>					_	<u>Ke</u>	^D D√	\sim	<u>ha</u>	\cap			<u>-Or</u>			
	3000	PROJECT L	OCATION				PRO.	-/28	72	k	LABOR 109	ATORY I	D 18	28		TORY R		149	8	ADDRESS C	NAME F	ord			
PROJECT CONTACT		PROJECT P	HONE NUM	BER		PROJECT	F. V			- 1	LABOR	ATORY	ADDRES	5						ADDRESS	3			\ .	
J. D.	and	PROJECT F	920	872	.9	q q	<u>592</u>	96	<u> 1450</u>	5	3	<u>کا (</u>	<u> 1</u>	<u> 1aa</u>	3∕.D.c	مناد	<u>. a</u>	ve.		22632	Gold	යරි	عزمه	<u> </u>	Str 270 91 <i>165</i>
PROJECT ADDRESS	i	CITY, STAT	E AND ZIPO	ODE		CLIEST					CITY 9	STATE A	NO ZIPO	ODE :	()					CITY. STAT	E AND ZIP	CODE	٥	9 A .	0101-
4800 Cak	COLOUR De.	Pass	<u>usbu</u>	<u>а, С</u>	<u> </u>	us	Nau	<u>u 31</u>	M	V_{\perp}	<u> </u>	hin	a.	<u>്</u>	A	91	<u>)((</u>	<u>ر</u>	لـــــــــــــــــــــــــــــــــــــ	1) <i>c</i> om	حري		<u>u, (</u>	A	71163
PROJECT MANAGE	R	PROJECT N	ANAGER'S			PROJECT	MANAGER'S	r SA	, _	_				/5/	< /	⟨\\		//	//	//,					
Tony	Food	9	<u>045</u>	<u> 396</u>	7662	40	<u>939</u>	<u> 16 / 1</u>	<u> کک/</u>	\Box		Nees	<u> </u>	%	$\langle \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma}$	**>	//	//	//	//					
Item (. + /	/ /		esetued *	Cont	Jevel 1		P.C.	alligot	X	$\mathcal{Y}_{\mathcal{A}}$		"	/,	//	/,						
= - 9	Sample Identifie	r	Mat		sie i	THE PY	50/ x			P.	15	V v		% \	8/	/,	/,	/,				Comm	ents		
1 MW.	-20-5		W	8.4.0	0124	Hryo3 Hry	10	III	Non	mal	X	X	X	X				T	H	3 1 MSI)				
2 Mw	-20-4				0824	\Box	5				X	X	X	Х				-					I	·	
3 HD	-00-3		1		0851		1				X	X	Ź	χ						3 5)3)		
	- 20-2	+	+-	 		 	+				$\langle \rangle$	/\			Ì	\dashv		-+							
4					0914		<u> </u>				<u> </u>	X	<u> </u>	1											
l , L	<u>s-20-7</u>				0934						X	X	X	X				-			,				
6	=B-3-8/4	1104			0927	1	4				۲	X	L	7				-							
7	TB-3-8/	गुव्य	4/-	T T	-	Hel	2	41	4	,	X	- 						-		-					
				<u> </u>				<u> </u>		.							寸								
8				<u> </u>							a			مما											
9					1		1		X		7	0.	, 0			- 1	-	-							
		-		-	 	+	<u> </u>	 /	4			8.5	(, 0	7 —	-	-+	\dashv	_							
10						-		4						ļ		-+	+						<u> </u>		
SAMPLES COLLEC	стер ву 33 1	- 444	<u>Γη</u>	COURIE	ER AND AIR BI	LL NUMBER													COOLE	R TEMPERATI	JRE UPON	RECEIPT			
	RELINQUISHED BY					ECEIVED B	Y		DA	_	TIM	_						SAM	PLE'S CO	NDITION UPO	N RECEIP	т			
Q. D.	97.8VP			꿏	alget,	2	tenan		<u>\$</u> -4		104														
Bucho	Stone			Ļ,	ffill.	M.	<u> </u>		84.	24	<u> 112</u>														
									<u> </u>																
				<u> </u>					<u> </u>								•								
	Di	stribution	ı: Whit	e - Lab	oratory (To be r	eturned	with An	alytica	al Re	port)	; Go	ldenr	od - F	Projec	t File	; Ye	llow	- Pro	ject Data	Mana	ager			

Applied Physics & Chemistry Laboratory

13760 Magnolis Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

September 01, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-3962 and your project: 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Submitted to: GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

Service ID #: 801-043962

Collected by: JJ/MM Collected on: 08/05/04 Received: 08/05/04 Extracted: N/A

Tested: 08/05-12/04 Reported: 08/17/04

Sample Description: Water from MW-19,MW-17 Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	DUPE-2-3Q04 04-03962-1	EB-4-8/5/04 04-03962-2	MW-17-2 04-03962-3	MW-17-3 04-03962-4
Dilution Factor				1	1	1	2
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 1	< 4	17.0	109
VOLATILE ORGANIC COMPOUNDS							
Dilution Factor				1	1	1	1
BENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$\mu {\rm g}/{\rm L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu} g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	1.0	9.7
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	0.8	2.7
CILOROMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu} \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

Cl-0470 D003 N 04-3962 Q Page: 1 of 6

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis	Result	•
Component Analyzed	Method	Unit	PQL	DUPE-2-3Q04	EB-4-8/5/04	MW-17-2	MW-17-3
				04-03962-1	04-03962-2	04-03962-3	04-03962-4
TRANS-1,2-DICHLOROETHENE	521.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICILOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	< 1	< l	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0,5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	0.6	0.5
TOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICIILOROBENZENE	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	3.4	3.8
TRICHLOROFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-3962 Page: 2 of 6

13760 Magnolía Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Result						
Component Analyzed	Method	Unit	PQL	MW-17-4 04-03962-5	MW-19-1 04-03962-6	MW-19-2 04-03962-7	MW-19-3 04-03962-8				
Dilution Factor				1	1	1	1				
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	<4	< 1	7.1	9.7				
VOLATILE ORGANIC COMPOUNDS											
Dilution Factor				1	1	1	1				
BENZENE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
BROMOCHLOROMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.4J	< 0.5				
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
BROMOMETRANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
SEC-BUTYLBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0 .5	< 0.5	< 0.5				
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0 .5	< 0.5	< 0.5				
2-BUTANONE	524.2	$\mu \mathrm{g}/\mathrm{L}$	10	< 10	< 10	< 10	< 10				
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
CHLOROBENZENE	524.2	$\mu { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
CHLORODIBROMOMETHANE	524.2	$\mu { m g}/{ m L}$	0.5	< 0.5	< 0.5	0.4J	< 0.5				
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
CHLOROFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	0.9	< 0.5				
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
2-CHLOROTOLUENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
4-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,2-DIBROMO-3-CIILOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/I_{i}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,1-DICHLOROETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	0.4J	< 0.5				
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	0.3J	< 0.5				
TRANS-1,2-DICHLOROETHENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
2,2-DICIILOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
1,1-DICIILOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5				
ETHYLBENZENE	524.2	μg/T,	0.5	< 0.5	< 0.5	< 0.5	< 0.5				

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-3982 ¼ Page: 3 of 6

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	MW-17-4	MW-19-1	MW-19-2	MW-19-3
			_	04-03962-5	04-03962-6	04-03962-7	04-03962-8
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1	< 1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPUTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACULOROETHANE	524.2	$_{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	"g/L	0.5	<0.5	< 0.5	1.4	1.5
TOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu \mathrm{g/L}$	0.5	0.9	< 0.5	0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICILLORO-122TRIFLUOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
<u> </u>					Analysis Re	sult	
Component Analyzed Method U	Init	PQL	М	W-19-4	MW-19-5		8/5/04
			04-03962-9		04-03962-1		962-11
Dilution Factor				1	1		1
PERCHLORATE 314.0 µ.	g/L	4		<4	< 4		_

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-3962 ¼ Page: 4 of 6

13750 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	MW-19-4 04-03962-9	MW-19-5 04-03962-10	TB-4-8/5/04 04-03962-11
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	με/ L μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	μ _Β / L	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	μς/L	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	μ5/ D μg/L	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	μΒ/L μg/L	10	< 10	<10	₹0.5
CARBON TETRACHLORIDE	524.2	μΒ/L μΒ/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	
CHLORODIBROMOMETHANE	524.2 524.2		0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5
CHLOROETHANE		μg/L,				< 0.5
CHLOROFORM	524.2	$\mu \mathbf{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
	524.2	$_{\mu\mathrm{g/L}}$	0.5	0.7	< 0.5	< 0.5
CILLOROMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICIILOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICILLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICIILOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-3962 h Page: 5 of 6

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	MW-19-4 04-03962-9	MW-19-5 04-03962-10	TB-4-8/5/04 04-03962-11
METHYL-T-BUTYL ETHER (MTBE)	524.2	μg/L	1	<1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	μg/L	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$\mu { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	2.3	4.2	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.6	< 0.5	< 0.5
1,2,3-TRICIILOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	0.4J	0.4J	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	<0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$\mu g/L$	0.5	0.7	< 0.5	< 0.5

					Analysis Result	_
Component Analyzed	Method	Unit	PQL	MW-17-2 04-03962-3	MW-17-3 04-03962-4	MW-17-4 04-03962-5
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	l	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	10	10.3	5.7

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-3962 h Page: 6 of 6

N.D.: Not Detected or less than the practical quantitation limit.

J: Reported between PQL and MDL.

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-3962

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-19,MW-17/4-12812

For GEOFON, Inc.

APCL Service No: 04-3962

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	- APCL Sample ID
MW-17-4	04-03962-5
MW-17-3	04-03962-4
MW-17-2	04-03962-3
MW-19-5	04-03962-10
MW-19-4	04-03962-9
MW-19-3	04-03962-8
MW-19-2	04-03962-7
MW-19-1	04-03962-6
DUPE-2-3Q04	04-03962-1
EB-4-8/5/04	04-03962-2
TB-4-8/5/04	04-03962-11

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds),

7196A (Chromium (VI)),

314.0 (Perchlorate, low level),

200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts of 0.145 ug/L and 0.103 ug/L was detected in the CCB associated with the field samples. However, Chromium amounts in the field samples significantly exceeded the amounts found in the CCBs.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-3962 09/01/2004 Page: 2 601

FEGE	OFC	NC		_	C 3	HAIN	-OF	-CUS	то	DY	RE	ECO	RD				LABO	RATOR	Y COPY	
GE I N C D 22632 GOLDE DIAMOND BA	F P D R A EN SPRINGS DR., R, CA 91765 • (90)	SUITE 270) 39 <u>6</u> -145	5	_	1 li	<u> </u>	7			<u> </u>						01	17	
GEOFON LAB COORDINATOR	LAB COORDINATO	L'S PHONE		LAB COOF	IDINATOR'S F			LABO	RATORY	SERVICE		. /	TORY CON			MAIL REPOR				
Scott Butmu	PROJECT LOCATIO	5 <u>46 7</u>	<u> (۵۵۲)</u>	90	939	ECT MARIE -1281	<u></u>	LABO	RATORY	PHONE		LABORA	TOOLS !	Char		AECIPIENT N	ANIE (org on_		
JPC GW-3004	1 MW-1					<i>-1281</i>	<u> 2 </u>		RATORY 590			909	390	o 14,	7 <u>8</u> _	1001	ام لا	<u> </u>		
J. D. Jones	PROJECT PHONE M	.0872	9	PROJECT	<u> </u>	6.140	55	120	120	VМ	an	Jar	ia 6	we.		226326	معلطوم	Soin	<u>., И.</u>	Sta 270
PROJECT ADDRESS 4800 Oak Corose De.	Pasade		A	CLIEST	Nav	, Si	ıΣlı	/ cm.	STATEA	ND ZIPCO	0 عدد اک	A	917							9176
Tony Ford	PROJECT MANAGE	n:e	7662	PROJECT	400.4GER 50 9 .39	ልx <i>ไດ / ዓ</i> ረ] ?/6	%	%							
Sample Identifie		latrix D	NE TI	ne Pre	Selved * 2	Cour	Evel 7.P	5 4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					//	//		C	ommen	LS	
1 MW-17-4		8.5.4	1021	Hu.3 Hu	5	皿	Morm		X	X	Х				<u> </u>					
2 MW-17-3			1048					$\mathbb{T}_{\mathcal{X}}$	Х	X	X					<u> </u>				· · · · · · · · · · · · · · · · · · ·
3 MW-17-2	4	1	///s ⁻	1				X	X	X	Х					-				
4								7												
5																				
6								Ţ												
7								9.	D.	1/1	صد						3	<u></u>		
8					/			8.	ه . ا	4						32	,			
9																	1			
10			4			ļ	ļ		┞-				_	7						
SAMPLES COLLECTED BY 33		COURIE	R AND AIR BII			<u> </u>	<u> </u>		٠,	·					——	ER TEMPERATUI		CEIPT		
RELINQUISHED BY	Y	1	R	ECEIVED BY	<u> </u>	Q,	DATE S-04		2.75					SA	AMPLE'S C	иоли иолионоз	RECEIPT			
To les about	. <u> </u>	77-63		ar .		3	-5-0		5 54	5										
The Contract of the Contract o							<u> </u>	 			•									

Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager

GEOFC)N	CHAIN-OF-C	CUSTODY R	ECORD	LABORATORY COPY
GEOFC INCORPORA 22632 GOLDEN SPRINGS DR., DIAMOND BAR, CA 81765 • (90)	SUITÉ 270	ss Mu)-19		0116
GEOFON LAB COORDINATOR LAB COORDINATOR	US PHONE 3'S SHORE 3'S	901 396 1455	LABORATORY SERVICE ID	Kenny Chan	MAIL REPORT (COMPANY NAME) GEOFON
Scort Behner 909 3 PROJECT NAME TPC 6W - 3004 MW-19		PROJECT MUMBER 4-128/2	LABORATORY PHONE 909 590 1828	909 590 1498	RECIPIENT NAME FORD
PROJECT CONTACT PROJECT PHONE M		FAV	LARONATORY ADDRESS		ADDRESS CJ
PROJECT ADDRESS Y800 COAK COLOUR & Pasad	INCOME CLIENT		CITY, STATE AND ZIPCODE	gralia Bur. A 91710	22132 Colden Springo D., Ste 270 CITY. STATE AND ZIPCODE Dinmond Bar, CA 9176
PROJECT MANAGER PROJECT MANAGE PHONE 909	396 7662 9C	:MANAGER'S 64 1939 (6 1455	5 /0/.		
<u> </u>	BRITITY STATE TIME ST	eseried to Contract to A.	S/0/07		Comments
1 Mb-19-5	8.5.04 D713 Ha	4 IV Harral	XX		
2 MD-19-4	0787		XX		
3 MO-19-3	0802		XX	\top	
4 MW-19-2	0821		XX		
5 MID-19-Z	0848		XX		
6 Dupe - 2 - 3004			XX		
7 =B-4-9/5/04-0 =B-4-8/5/04	0837	4	XX		
8 TB-4-8/5/04	1 - HCI	2 + +	X		2968
9		7 9.2	. 700		3.00
10		8	54		
SAMPLES COLLECTED BY 33 + N N	COURSER AND AIR BILL NUMBER	R	<u> </u>		LER TEMPERATURE UPON RECEIPT
RELINQUISHED BY	RECEIVED E	BY DATE	TIME	SAMPLE'S	CONDITION UPON RECEIFT
9. 9 6/ De	2. Kinhay	9-5-0-1	12:15		· · · · · · · · · · · · · · · · · · ·
's Mushall	- Jane		1345	<u> </u>	<u> </u>
	+/		 	<u></u>	

Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

September 03, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-4000 and your project: 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Submitted to: GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

Service ID #: 801-044000 Collected by: JJ/MM

Collected on: 08/09/04

Received: 08/09/04 Extracted: N/A

Tested: 08/09-12/04 Reported: 08/16/04

Sample Description: Water from MW-4/MW-11 Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

					Analysis	Result		
Component Analyzed	Method	Unit	PQL	DUPE-3-3Q04		MW-4-1	MW-4-2	
				04-04000-1	04-04000-2	04-04000-3	04-04000-4	
Dilution Factor	-			1	1	1	1	
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	< 4	4.5	
VOLATILE ORGANIC COMPOUNDS								
Dilution Factor				1	1	1	1	
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
-2-BUTANONE	524-2	$\frac{\pi}{\mu}g/E$	10	 <10	1-J	<10	<10	
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	∢0.5	
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	0.5	
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5	

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

CI-0470 D003 N 04-4000 b

Page: 1 of 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	DUPE-3-3Q04	EB-5-8/9/04	MW-4-1	MW-4-2
				04-04000-1	04-04000-2	04-04000-3	04-04000-
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	1.7	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	<1	< 1	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu \mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	1.1
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	2.8	0.6	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	1
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE		$_{\mu \mathrm{g/L}}$	0.5	< 0.5	1	< 0.5	< 0.5
M/P-XYLENE		$_{\mu \mathrm{g/L}}$	0.5	< 0.5	7.2	0.7	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-4000 b Page: 2 of 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed						lt.
·	Method	Unit	PQL	MW-4-3	Analysis Resul	MW-11-2
				04-04000-5	04-04000-6	04-04000-7
Dilution Factor		-		1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	< 4
VOLATILE ORGANIC COMPOUNDS		,				
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}^{\rm g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}$ g/L	10	<10	< 10	<10
CARBON TETRACHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
-4-CHLOROTOLUENE	524.2	$\frac{\mu g}{\mu g}/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	με/ L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	με/L μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	με/ L μg/L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	με/L μg/L	0.5	3.7	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 № 04-4000 ↓ Page: 3 of 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

						Analysis R	esul t
Component Analyzed		Method	Unit	PQL	MW-4-3 04-04000-5	MW-11-1	
HEXACHLOROBUTAD	IENE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE	(CUMENE)	524.2	$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUE	NE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORI	DE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ET	THER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	< 1	<1
4-METHYL-2-PENTAN	ONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE		524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE		524.2	$_{\mu}{ m g}/{ m L}$		0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLORO	DETHANE	524.2	$_{\mu \mathrm{g/L}}$		< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLORO	DETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHE	NE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TOLUENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	0.6	< 0.5	< 0.5
1,2,3-TRICHLOROBEN	ZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBEN	ZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETH	ANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETH	ANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUORON	METHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPRO	PANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TR	IFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBEN	ZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBEN	ZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
					Analysi	s Result	
Component Analyzed	Method Unit	PQI	Ĺ	MW-11-3	-		TB-5-8/9/04
				04-04000-			04-04000-10
Dilution Factor				1	1		1
PERCHLORATE	314.0 μg/L	4		< 4	< 4	1	-

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	ılt
Component Analyzed	Method	Unit	PQL	MW-11-3 04-04000-8	MW-11-4 04-04000 - 9	TB-5-8/9/04 04-04000-10
VOLATILE ORGANIC COMPOUNDS				<u>.</u> _		
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	μ8/- μg/L	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	μg/L	10	< 10	<10	1J
CARBON TETRACHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	με/L μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	μ6/ L μg/L	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	μ g/L	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	με/L μg/L	0.5	< 0.5	< 0.5	< 0.5
-1,2-DIBROMOETHANE (EDB)	524.2	μ6/ L 	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	με/ L	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	με/ Σ μg/L	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}^{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	με/ L μg/ L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	με/ L μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5		
1,2-DICHLOROPROPANE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5 < 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	με/ L μg/L	0.5	< 0.5	< 0.5	< 0.5 < 0.5
2,2-DICHLOROPROPANE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	
1,1-DICHLOROPROPENE	524.2	με/L μg/L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L μg/L	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	με/ L μg/L	0.5	< 0.5	< 0.5	< 0.5 < 0.5
HEXACHLOROBUTADIENE	524.2	μβ/L μg/L	0.5	< 0.5	< 0.5	< 0.5 < 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	με/ L μg/L	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-4000 h Page: 5 of 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-11-3	MW-11-4	TB-5-8/9/04
				04-04000-8	04-04000-9	04-04000-10
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	0.4J	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.3J	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

•					Analysis Result	
Component Analyzed	Method	Unit	PQL	EB-5-8/9/04 04-04000-2	MW-4-1 04-04000-3	MW-4-2 04-04000-4
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	0.0070J
Dilution Factor				1	1.25	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	0.67	0.76	13.9

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-4000 h Page: 6 of 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analys	is Result	
Component Analyzed	Method	Unit	PQL	MW-4-3 04-04000-5	MW-11-1 04-04000-6	MW-11-2 04-04000-7	MW-11-3 04-04000-8
CHROMIUM (VI) Dilution Factor	7196	mg/L	0.01	< 0.01 1.25	< 0.01 1	< 0.01 1	< 0.01 1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	0.95	10.1	9.1	9.6

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Respectfully submitted,

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-4000 \$\text{\$\text{\$\text{\$Q\$}}\$ Page: 7 of 7

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-4000

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-4/MW-11/4-12812

For GEOFON, Inc.

APCL Service No: 04-4000

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID	
MW-4-3	04-04000-5	
MW-4-2	04-04000-4	
MW-4-1	04-04000-3	
EB-5-8/9/04	04-04000-2	
TB-5-8/9/04	04-04000-10	
MW-11-4	04-04000-9	
MW-11-3	04-04000-8	
MW-11-2	04-04000-7	
MW-11-1	04-04000-6	
DUPE-3-3Q04	04-04000-1	

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds),

7196A (Chromium (VI)),

314.0 (Perchlorate, low level),

200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts of 0.145 ug/L and 0.103 ug/L was detected in the CCB associated with the field samples. However, Chromium amounts in the field samples significantly exceeded the amounts found in the CCBs.

CADHS ELAP No: 1431 APCL Case Narrative: 04-4000 09/03/2004 Page: 11 1 0 0

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-4000 09/03/2004 Page: 21 1 0 1

Τ	4	7		T	SAMP	10	~	∞	7	٥	<u> </u>	5	4	ω	2		lten	n Ç	T PROPER	PROJECT	Name of the second	ス る る で で で で で の に の に の に の に の に の に の に の	GEOPO!	 	
	Ju Marile	" Market	7 D. Mas	LINOUISHED BY	SAMPLES COLLECTED BY X X +							TR-5-819104	IB-5-8/9/04	MW-4-2	HW-4-2	HW-4-3	Sample Identifier		Ž	PROJECT ADDRESS Social Control of the control of	PROJECT CONTACT	L	GEOFON LAB COORDINATOR		G
			2		COURIE			.—				₩				<u> </u>	Main's	· (PHONE OOO AOO	Pasadena	714 920 8729	PROJECT LOCATION	C 968 80 b	1 N C O R P O R A T E D 22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455	
			11/2/18	RECEIVED BY	COURIER AND AIR BILL NUMBER.	1		_				- Hc/ 2	0739	846	0723	500 ET. 1	C TIME PIESEL		OLLZ PROJECT MANAGE	CA US Navy	PROJECT FAX	PR		• FAX (909) 396-1455	ے
- 		-	_	DATE	,			8.9 04	0.00			* * *	¥			W	\$ CO CC VE X X X	ar ich	。 交	SWATZ	3961455 13	7-12812 90	361455	715-4	MAIIN-OF-CU
	6	77.73	\$5,00	TIME					1 as				XXX	× × ×	XXX	 _ _ 	70	X		TATE AND ZIPCODE O	5760 Magadic Bus	909 590 1828 5	ē		CHAIN-OF-COSTODI RECORD
:				SAMPL		 											4	AC.	$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	91710	die Bur.	409 590 1498	KUNNY CHON		COND
				SAMPLE'S CONDITION UPON RECEIPT	COOLER TEMPÉRATURE UPON RECEIPT												Comments	\ H	// 400	Diamond Bar, CA 91765	22632 Golden Springs M., 220		MAIL REPORT (COMPANY NAME)	8110	
																	nts		>	CA 9172	Springo Jr., 27				LABORATORT COPT

Distribution:	C. M. Water	D. D. C.	SAMPLES COLLECTED OF THE STATE	NI SECONI SCIED BY: K-K	10	9	8	7	c	6	5 Mupe - 3 - 3004	4 Mw-11-7	3 715-11-2				Item C Sample Identifier	WAGER PHONE OF THORE OF	PROJECT ADDRESS 4800 Oak COLONE IN POLOCE	sosso 1	7-3004 BOETING	GEOPON'S LAB COORDINATOR LAB COORDIN	22632 GOLDEN SPRINGS DR., SUITE 270 DJAMOND BAR, CA 91765 • (909) 396-7662	
White - Laboratory (To be returned with Analytical Report);	The Sall	8.9		COURIER AND AIR BILL NUMBER:		_				+	+	102.4	045	040	1 62 Hone	9.04 HC1 2	Malita Date Line preserved * of Conf.	396 7662 909 396 1°	anadera, CA US Navy SWITT	229	A 28		N C C R P C R A T E C 22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455	CHAIN-O
ical Report); Goldenrod - Project File; Yellow - Project Data Manager	10,21 44	10	DATE TIME SAM				8.9.87	9. 4. Var	2		4 × ×	XXXX		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, , , , , ,	<u>1</u> <u>×</u>	,4 ²	28/1/25/25	C	13760 Magnolia Ave.	109.390 1828			CHAIN-OF-CUSTODY RECORD
- Project Data Manager			SAMPLE'S CONDITION UPON RECEIPT	COOLER TEMPERATURE UPON RECEIPT													Comments	// 4000	Diagnood Bar, CA 91765	22682 Coo loka Springo W., 270			1	LABORATORY COPY

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710Tel. (909) 590-1828 Fax (909) 590-1498

September 03, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-4017 and your project: 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Submitted to: GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

Service ID #: 801-044017 Collected by: JJ/MM

Extracted: N/A Collected on: 08/10/04 Tested: 08/10-12/04

Reported: 08/17/04

Received: 08/10/04

Sample Description: Water from MW-23/MW-24 Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

Component Analyzed	Method	d U	nit	PQL		8/10/04 4017-1	MV	is Result V-23-1 4017-2	MW-23-2 04-04017-3
Dilution Factor PERCHLORATE	314.0	μΙ	g/L	4		1 < 4	4	1 1.4	1 4.9
Component Analyzed Mo	ethod	Unit	PQL		N-23-3 04017-4	A MW-24 04-0401		Lesult MW-24-2 4-04017-7	MW-24-3 04-04017-8
Dilution Factor PERCHLORATE 3	14.0	μg/L	4		I <4	100 2,170)	1 99.7	1 < 4
Component Analyzed		Method	Unit	PQL	EB-6-8/1 04-0401	•	Analys IW-23-1 -04017-2	is Result MW-23-2 04-04017-3	=
CHROMIUM (VI)		7196	mg/L	0.01	< 0.0	1	< 0.01	< 0.01	< 0.01
Dilution Factor CHROMIUM	01111×~	200.8	$_{\mu \mathrm{g}}/\mathrm{L}$	0.1	1 0.87		$1\\15.2$	1 14.1	1 11.2
VOLATILE ORGANIC COMP Dilution Factor BENZENE	OUNDS	524.2	μg/L	0.5	1 < 0.5		1 < 0.5	1 < 0.5	1 <0.5
BROMOBENZENE BROMOCHLOROMETHAN BROMODICHLOROMETH		524.2 524.2 524.2	μg/L μg/L	0.5 0.5 0.5	< 0.5 < 0.5		< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
BROMOFORM BROMOMETHANE	ANE	524.2 524.2 524.2	μg/L μg/L μg/L	0.5 0.5 0.5	< 0.5 < 0.5 < 0.5		< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5
N-BUTYLBENZENE SEC-BUTYLBENZENE		524.2 524.2	με/L μg/L μg/L	0.5 0.5	< 0.5 < 0.5		< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
TERT-BUTYLBENZENE 2-BUTANONE		524.2 524.2	μg/L μg/L	0.5 10	< 0.5 < 10		< 0.5 < 10	< 0.5 < 10	< 0.5 < 10
CARBON TETRACHLORII CHLOROBENZENE		$524.2 \\ 524.2$	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5 0.5	< 0.5 < 0.5		< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
CHLORODIBROMOMETH.	ANE	524.2 524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5 0.5	< 0.5 < 0.5		< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
CHLOROFORM CHLOROMETHANE 2-CHLOROTOLUENE		524.2 524.2 524.2	μg/L μg/L μg/L	0.5 0.5 0.5	< 0.5 < 0.5 < 0.5		< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 N 04-4017 Page: 1 of 6

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	EB-6-8/10/04		MW-23-2	MW-23-3
·				04-04017-1	04-04017-2	04-04017-3	04-04017-4
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	μg/L		< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu g/L$		< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	0.3J	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	μg/L	0.5	0.6	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE '	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$\mu g/L$	1	<1	<1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	<10	<10	< 10	<10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE		$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	0.8	< 0.5	< 0.5
TOLUENE	524.2	μg/L	0.5	1.0	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}^{\mu}g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	0.8	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}^{\rm g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	μg/L	0.5	0.4J	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	μg/L	0.5	2.6	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 № 04-4017 b Page: 2 of 6

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	MW-23-4 04-04017-5	Analysis Resu MW-24-1 04-04017-6	lt MW-24-2 04-04017-7
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	7.9	11.2	9.2
OLATILE ORGANIC COMPOUNDS		•				
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	-	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	-	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu \mathrm{g/L}}$	0.5	-	< 0.5	< 0.5
BROMOMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	-	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	μg/L	0.5	-	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	_	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
2-BUTANONE	524.2	μg/L	10	-	< 10	< 10
CARBON TETRACHLORIDE	524.2	μg/L	0.5	-	16.7	4.1
CHLOROBENZENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	-	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}$ g/L	0.5	-	< 0.5	< 0.5
CHLOROFORM	524.2	μg/L	0.5	_	5.9	1.7
CHLOROMETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	μg/L	0.5	-	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	-	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	_	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}$ g/L	0.5	_	< 0.5	< 0.5
DIBROMOMETHANE	524.2	μg/L	0.5	_	< 0.5	< 0.5
4-METHYL-2-PENTANONE (MIBK)	524.2	μg/L	10	_	< 10	< 10
1,2-DICHLOROBENZENE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	_	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	_	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	_	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	_	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	μg/L	0.5	_	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	μg/L	0.5	_	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	_	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	_	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	_	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	_	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	_	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	_	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	_	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 № 04-4017 b Page: 3 of 6

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	MW-23-4	MW-24-1	MW-24-2
				04-04017-5	04-04017-6	
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	-	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu \mathrm{g/L}}$	0.5	-	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	-	< 1	<1
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
STYRENE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	-	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	1.7	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
TRICHLOROETHENE	524.2	μg/L	0.5	_	2.4	0.7
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	_	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	-	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}^{ m g/L}$	0.5	_	< 0.5	< 0.5

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	MW-24-3 04-04017-8	MW-24-4 04-04017-9	TB-6-8/10/04 04-04017-10
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	-
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu \mathrm{g/L}}$	0.1	7.3	6.2	-

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-4017 h Page: 4 of 6

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	
Component Analyzed	Method	Unit	PQL	MW-24-3	MW-24-4	TB-6-8/10/04
				04-04017-8	04-04017-9	04-04017-10
VOLATILE ORGANIC COMPOUNDS	_					
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	-	0.9J
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
CHLOROFORM	524.2	μg/L	0.5	< 0.5	-	< 0.5
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	<u>-</u>	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	-	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	<u>μg/</u> Ľ	0.5	< 0.5	-	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	_	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	-	< 0.5
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	-	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	_	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	-	< 0.5
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	_	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	_	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	_	< 0.5
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	_	< 0.5
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	_	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	_	< 0.5
ETHYLBENZENE	524.2	μg/L	0.5	< 0.5	_	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	-	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	_	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-24-3 04-04017-8	MW-24-4 04-04017-9	TB-6-8/10/04 04-04017-10
P-ISOPROPYLTOLUENE	524.2	μg/L	0.5	< 0.5	-	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	_	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	_	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	-	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	_	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	-	< 0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUORO	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	-	< 0.5
-1,2,4-TRIMETHYLBENZENE	524.2	μg/L	0.5	<0.5	-	<0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
VINYL CHLORIDE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	-	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	-	< 0.5
M/P-XYLENE	524.2	μg/L	0.5	< 0.5	-	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-4017 ឯ Page: 6 of 6

J: Reported between PQL and MDL.

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-4017

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498 13760 Magnolia Ave., Chino CA 91710Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-23/MW-24/4-12812

For GEOFON, Inc.

APCL Service No: 04-4017

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID	-
 MW-23-4	04-04017-5	
MW-23-3	04-04017-4	
MW-23-2	04-04017-3	
MW-23-1	04-04017-2	
EB-6-8/10/04	04-04017-1	
TB-6-8/10/04	04-04017-10	
MW-24-4	04-04017-9	
MW-24-3	04-04017-8	
MW-24-2	04-04017-7	
MW-24-1	04-04017-6	

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds),

7196A (Chromium (VI)),

314.0 (Perchlorate, low level),

200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts of 0.235 ug/L and 0.213 ug/L was detected in the CCB associated with the field samples. However, Chromium amounts in the field samples significantly exceeded the amounts found in the CCBs.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-4017 09/03/2004 Page: 2 901

CHAIN-OF-CUSTODY RECORD

Distribution: White - Laborator		Halifter Ellisper	130 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RELINQUISHED BY	SAMPLES COLLECTED BY: 33 4 11 COURIER AND AIR BILL NUMBER.		9	8	7	6 TB-4-8/10/04 4 4	5 = 3-6-8/10/04 0/50	4 Hw-23-2	3 MW-83-5 805	2 HW-83-3	20 pc. 0.8	Sample Identifier	long Ford PHONE 909 3967662	(COTO-16).	Jones) - 3004 HW-23	SCOLL BUNNEL 909 396 7662	22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455	
Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yello		1000 A 10		TIME		1		20 d			* × × × ×	う	<u>10</u>	TES S - XXXX	Hanc 2 III Normal XX	The State of Court of State of	909 396 1455 No. 1955	China (09 396 1456	4-12812 909 S90 1828 909 S90	NATOR SFAX LABORATORY SERVICE ID LABORATORY CONTACT D ACONTACT	909) 396-1455	CHAIN-OF-CU
Project File; Yellow - Project Data Manager				SAMPLE'S CONDITION UPON RECEIPT	COOLER TEMPERATURE UPON RECEIPT								MSIMSD			Comments			. 22632 Go	 ,	Chan GEOFON	0120	LABORATORY COPY

Distribution: White -	4 slight Miches	6.0.6/sur	RELINQUISHED BY	77	01	0	8	7	6		4 HW-24-7	3 Mw-24-2	2 MW-24-3	X		Sample Identifier	PROJECT MANAGER PHONE 909 3	ar Grant h. Pasade	114 920 87 114 920 87	0-3904	SCOTT BUNNEL 909 396		
Laboratory (To be returned with Analytical Report); Gold	Man 8100	Sales Sales	RECEIVED BY DATE	;;;;			8.10.	0.			050 4 10 4 4	4	100 H HO3	Long	LOUN P.	Date Line Deserted Con Clevel	120 6	na CA US klavy SWATY	29 909 396 1455	4-12812	19 396/455	270 270 7662 • FAX (909) 396-1455	CHAIN-OF-CUSTOD
enrod - Project File;	1200	1	100 m	CAMP			\$ \	Dor			X	* * *	* X X X	× × ×		2.01 2.14	3.50 CON CO 1		13760 Magnolia due.	199 590 1828 909 590 1498	LABORATORY SERVICE ID LABORATORY CONTACT ACONTACT ACON	724	CUSTODY RECORD
Yellow - Project Data Manager			SUM DE SECURITARION DES MACONIC	COXTEX TEMPERATURE OF OWN RECEIPT			1 TO 1				MOL MOD	-i I				Comments		Diamond Bar, CA 91765	22632 Conter Spring L., Str 22	LONG FOLD	MAIL REPORT (COMPANY NAME) OFOFOH RECURSTRANCE	0121	LABORATORY COPY

AMENDED

04-4017

10/4/04

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-23/MW-24/4-12812

For GEOFON, Inc.

APCL Service No: 04-4017

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID
MW-23-4	04-04017-5
MW-23-3	04-04017-4
MW-23-2	04-04017-3
MW-23-1	04-04017-2
EB-6-8/10/04	04-04017-1
TB-6-8/10/04	04-04017-10
MW-24-4	04-04017-9
MW-24-3	04-04017-8
MW-24-2	04-04017-7
MW-24-1	04-04017-6

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds),

7196A (Chromium (VI)),

314.0 (Perchlorate, low level),

200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts of 0.235 ug/L and 0.213 ug/L was detected in the CCB associated with the field samples. However, Chromium amounts in the field samples significantly exceeded the amounts found in the CCBs.

(2) Perchlorate, 314.0:

Perchlorate recoveries in the MS/MSD spiked on the sample MW-24-1 were much higher than upper control limits, due to high level of Perchlorate in the parent sample. The recoveries in the LCS/LCSD were within

control limits.

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova // (Associate QA/QC Director Applied P & CH Laboratories

FORM-3

Applied P & CH Laboratories

Matrix Spike/Matrix Spike Duplicate Recovery for Method 314.0

Client Name:

GEOFON, Inc.

Contract No:

Lab Code:

APCL

Case No:

SAS No:

Service ID:

44017

Project ID:

JPL GW-3Q04

Project No: Batch No:

Sample Matrix: 4-12812

Water

MS Filename:

04W3576 Date Analyzed: 081004

Time Analyzed:

19:13

MSD Filename: -

Date Analyzed: 081004

Time Analyzed:

19:32

MS Sample No: MW-24-1

Sample Lab ID: 04-4017-6

Spiked		Spike	Concentr	ation	MS	QC Limit, %
Components	Unit	Added	Unspiked	MS	Rec% #	REC
PERCHLORATE	$_{\mu \mathrm{g/L}}$	25	2170	2260	360 *	75-125
# of Out-of-control					1	

Spiked		Spike	MSD	MSD		QC Limit, %
Components	Unit	Added	Concentration	Rec% #	RPD% #	RPD REC
PERCHLORATE	$_{\mu}\mathrm{g/L}$	25	2310	560 *	2	20 75-125
# of Out-of-control	-			1	0	

#	Column	to	be	used	to	flag	recovery	and	RPD	values:

:	* _	Values	outside	ωf	contract	required	OC	Limit
	_	values	Outside	O.	COMME	reduited	\sim	TATITITE

Comments:			

AMENDED

D - Spiked components diluted out

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710Tel. (909) 590-1828 Fax (909) 590-1498

September 03, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-4031 and your project: 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Submitted to: GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

Service ID #: 801-044031

Collected by: JJ/TM Collected on: 08/11/04 Received: 08/11/04 Extracted: N/A

Tested: 08/11-23/04 Reported: 08/27/04

Sample Description: Water from MW-3/MW-12 Project Description: 4-12812 JPL-GW-3Q04

Analysis of Water Samples

				Analysis Result					
Component Analyzed	Method	Unit	PQL	DUPE-4-3Q04 04-04031-1	EB-7-8/11/04 04-04031-2	MW-3-2 04-04031-3	MW-3-3 04-04031-4		
Dilution Factor	-			1	1	1	1		
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	12.5	< 4		
VOLATILE ORGANIC COMPOUNDS									
Dilution Factor				1	1	1	1		
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10		
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TERT-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.8	< 0.5		
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

Cl-0470 D003 X 04-4031 Page: 1 of 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result					
Component Analyzed	Method	Unit	PQL	DUPE-4-3Q04	EB-7-8/11/04	MW-3-2	MW-3-3		
				04-04031-1	04-04031-2	04-04031-3	04-04031-4		
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1-DICHLOROPROPENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
ETHYLBENZENE	524.2	$\mu g/L$	0.5	0.7	< 0.5	< 0.5	0.6		
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
ISOPROPYLBENZENE (CUMENE)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
P-ISOPROPYLTOLUENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
METHYLENE CHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	0.3J	<1	<1	0.4J		
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	<10	< 10	< 10	< 10		
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1,2,2-TETRACHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.4J	< 0.5	< 0.5	0.3J		
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,1,2-TRICHLOROETHANE	524 .2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.4J	< 0.5		
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
${\tt 112TRICHLORO-122TRIFLUOROETHANE}$	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5		
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.8	< 0.5	< 0.5		

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 № 04-4031 ឯ Page: 2 of 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	MW-3-4	Analys MW-12-1	is Result MW-12-2	MW-12-3
			·	04-04031-5	04-04031-6		04-04031-8
Dilution Factor				1	1	1	1
PERCHLORATE	314.0	$_{\mu}$ g/L	4	< 4	< 4	<4	<4
VOLATILE ORGANIC COMPOUNDS		•					
Dilution Factor				I	1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu \mathrm{g/L}}$	10	< 10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	0.5J	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	2.4
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-4031 N Page: 3 of 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

						Analys	is Result	
Component Analyzed		Method	Unit	PQL	MW-3-4	MW-12-1	MW-12-2	MW-12-3
					04-04031-5	04-04031-6	04-04031-7	04-04031-8
HEXACHLOROBUTADII	ENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	Ε	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORID	E	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETH	IER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1	< 1	<1
4-METHYL-2-PENTANO	NE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10	< 10
NAPHTHALENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE		524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
STYRENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROE	THANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROE	ETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHEN	E	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TOLUENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZI	ENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZI	ENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHA	NE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHA	NE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROM	ETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPA	ANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRII	FLUOROETHANI	E 524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZ	ENÉ	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZI	ENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
O-XYLENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE		524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5	< 0.5
	<u></u>							
Comment of the Comment	3.6.43.3	T '.	DOI			Analysis Re		- 4. 4.
Component Analyzed	Method I	Jnit	PQL		W-12-4 04031-9	MW-12-5 04-04031-10		8/11/04 031-11
Dilution Factor					1	1		1
PERCHLORATE	314.0 "	g/L	4		3.2J	1.8J		

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-4031 ¼ Page: 4 of 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	lt
Component Analyzed	Method	Unit	PQL	MW-12-4 04-04031-9	MW-12-5 04-04031-10	TB-7-8/11/04 04-04031-11
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	10	< 10	< 10	1 J
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	3.0	1	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu \mathrm{g/L}}$	0.5	0.8	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
-1,2-DIBROMOETHANE (EDB)	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-4031 b Page: 5 of 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Resu	ılt
Component Analyzed	Method	Unit	PQL	MW-12-4	MW-12-5	TB-7-8/11/04
				04-04031-9	04-04031-10	04-04031-11
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	<10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.6	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUORO	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	DUPE-4-3Q04 04-04031-1	EB-7-8/11/04 04-04031-2	MW-3-2 04-04031-3	MW-3-3 04-04031-4
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	7.4	0.29	8.8	7.2

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-4031 h Page: 6 of 7

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result									
Component Analyzed	Method	Unit	PQL	MW-3-4	MW-12-1	MW-12-2	MW-12-3						
				04-04031-5	04-04031-6	04-04031-7	04-04031-8						
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01	< 0.01						
Dilution Factor				1	1	1	1						
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	6.6	11.7	12.0	6.5						

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Mox /

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-4031 ឯ Page: 7 of 7

J: Reported between PQL and MDL.

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW 3Q04

APCL Service ID: 04-4031

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL-GW-3Q04/MW-3/MW-12/4-12812

For GEOFON, Inc.

APCL Service No: 04-4031

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sampl	2 ID APCL Sample ID
MW-12-5	04-04031-10
MW-12-4	04-04031-9
MW-12-3	04-04031-8
MW-12-2	04-04031-7
MW-12-1	04-04031-6
MW-3-4	04-04031-5
MW-3-3	04-04031-4
MW-3-2	04-04031-3
DUPE-4-3Q04	04-04031-1
TB-7-8/11/04	04-04031-11
EB-7-8/11/04	04-04031-2

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds),

7196A (Chromium (VI)),

314.0 (Perchlorate, low level),

200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts ranging from 0.152 ug/L to 0.235 ug/L was detected in the CCBs associated with the field samples. However, Chromium amounts in the field samples significantly exceeded the amounts found in the CCBs.

GADHS ELAP No: 1431 APCL Case Narrative: 04-4031 09/03/2004 Page: 11 3 0 0

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-4031 09/03/2004 Page: 21 3 0 1

Himili litaatill GEOFON

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

A Company	A. Mars	RELINQUISHED BY	SAMPLES COLLECTED BY IS + 49TH	10	9	8	7	6 = B- 7 - 8111 lox	5 TB-7 -8/11/04	4 Dupe-4-3004	3 Mis-3-2	2 Mw-3:3	1 MW-3-4 W	Ite Sample Identifier	ROJECT MANAGER PROPERT MANAGER'S PROPERT MANAGER	TADDRESS	0000	3-3004	STOOL BURNING 909 396	22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BAR, CA 91765 • (909) 396-7662 • FAX (909) 396-1455
Mund	Day Junes	/	COURIER AND AIR BILL NUMBER.					A 0810 HC 2	1 = 2	4-	622	0H2	17 世紀	Dake	<u> </u>	<u> </u>	8729 9093961455		1 ~∪ ≥	E D TE 270 16-7662 • FAX (909) 396-1455
2) (2110 17-6	DATE TIME			8.11.04	0.0 Osma		XXXX XXXX	<u>×</u>	W X X X	XXXX	←	Harral X	1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		China Ch	13740 Mag	109 590 18 28	1455	MW-3
		SAMPLE'S CONDITION UPON RECEIPT	COOLER TEMPERATURE UPON RECEIPT			403								130		9/7/0 CITY, STATE AND ZIPCODE	Anolia Auc. 22632 60	0 18/98 TO	in Mal	
) E P P P P P P P P P P P P P P P P P P	ON RECEIPT											Comments		zircode nd Bon, Cd 91765	22632 Goden Sprinss b., St. 270	ord	REPORT (COMPANY MANE)	0/22

Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager

てニノ-)2	CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

_				,									 									_						-,-	
	Secondana D.	A Control of	1. 1.D. C/849	RELINOVISHED BY	SAMPLES COLLECTED BY	10		9	8		7	0	5 110-16-1	2	MW-12-2	3 Mw-12-3	2	H17-17-4	1 Mw-12-5	Sample Identifier	TOWN FOLD	_	U. Chare h.	PROJECT ADDRESS		-	Scott Burner	CONTRACTOR CONTRACTOR	22632 GOLDEN S
			Thing	R	COURJER AND AIR BILL NUMBER.								1 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	16			0457	1 22	المحرا	Matrix Date ringe	101 OTO 101	PROJECT MANAGER'S	Pasadena, CA	CITY, STATE AND ZIPCODE	PROJECT PHONE NUMBER 920 8729	PROJECT LOCATION	909 396 7662	LAB COORDINATOR'S PHONE	INCORPORAÇÃO DE ATED 22632 GOLDEN SPRINGS DR., SUITE 270 DIAMOND BABICA 01765 • (200) 306-7662 • FAX (200)
	- المردري	27.65	mand RIWEY	RECEIVED BY DATE	L NUMBER.		<u> </u>	o	4.11.10	Ξ.		J	4			話いい	4		111 17 元	The speser of Control of A. A.	7	<u> </u>	US Nawy SwhIV	\ - -	979 ,39% 1455	PROJECT NUMBER 4-12812	9093961455	LAB COOPENATOR'S TAY	1
	1001	4)2/0	Mac!	TIME					-				× × ×	> > 7		× × ×	×	· · ·		200	Š	12	CA	PCOD .	DANGE TOOK	109 590 1828 409	l	1 ABORATORY SERVICE IN I ABORATOR	-12
				SAMPLE'S CONDITION UPON RECEIPT	COOLER TEMPERATURE UPON RECEIPT	<u>t</u>									•	4 0°3					4		91710, Diamon d Bar.		Appropriate Propriess O	409590 198 TON FOLD	l		~
				τ	RECEIPT															Comments			Bar, CA 91765	CODE	ADDRESS () 22437. (O.) Society Dr. St. 270	Foud	07	NY VAME	0/23

Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

September 13, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-4044 and your project: 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova 🗸

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

APCL Analytical Report

Service ID #: 801-044044

Collected by: JJ/MM

Collected on: 08/12/04

Received: 08/12/04 Extracted: N/A

Tested: 08/12-26/04 Reported: 08/27/04

Sample Description: Water from MW-22

Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

				Analysis Result			
Component Analyzed	Method	Unit	PQL	EB-8-8/12/04 04-04044-1	MW-22-1 04-04044-2		
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01		
Dilution Factor				1	1.25		
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	0.23	7.3		
Dilution Factor		,		1	1		
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	2.6J		
VOLATILE ORGANIC COMPOUNDS		•					
Dilution Factor				1	1		
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
BROMOCHLOROMETHANE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5		
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5		
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10		
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5		
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
1,1-DICHLOROETHANE	524.2	$_{\mu}$ g/ $ m L$	0.5	< 0.5	< 0.5		
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5		
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5		

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-4044 b Page: 1 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis	Result
Component Analyzed	Method	Unit	PQL	EB-8-8/12/04	MW-22-1
				04-04044-1	04-04044-2
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.5	0.7
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.9
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	0.3J
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu }\mathrm{g/L}$	0.5	< 0.5	< 0.5
112-TRICHLORO122TRIFLUOROETHANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-4044 Page: 2 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-22-2 04-04044-3	MW-22-3 04-04044-4	TB-8-8/12/04 04-04044-5
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	-
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	9.8	10.0	-
Dilution Factor		·		1	1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	2.8J	< 4	-
VOLATILE ORGANIC COMPOUNDS		,				
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	μg/L	10	< 10	< 10	1 J
CARBON TETRACHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}^{\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROETHANE	524.2	με/- μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	με/ Σ μg/L	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu \mathrm{g/L}}^{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-4044 h Page: 3 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result					
Component Analyzed	Method	Unit	PQL	MW-22-2 04-04044-3	MW-22-3 04-04044-4	TB-8-8/12/04 04-04044-5			
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5			
ETHYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5			
HEXACHLOROBUTADIENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5			
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
P-ISOPROPYLTOLUENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5			
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	0.8	0.7	< 0.5			
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu \mathrm{g/L}}$	1	< 1	< 1	<1			
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu \mathrm{g/L}}$	10	< 10	< 10	< 10			
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
N-PROPYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
O-XYLENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-4044 D Page: 4 of 4

N.D.: Not Detected or less than the practical quantitation limit.

J: Reported between PQL and MDL.

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW 3Q04

APCL Service ID: 04-4044

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/MW-22/4-12812

For GEOFON, Inc.

APCL Service No: 04-4044

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample I	D APCL Sample ID
MW-22-3	04-04044-4
MW-22-2	04-04044-3
MW-22-1	04-04044-2
EB-8-8/12/04	04-04044-1
TB-8-8/12/04	04-04044-5

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)),

314.0 (Perchlorate, low level),

200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts ranging from 0.190 ug/L through 0.244 ug/L was detected in the CCBs associated with the samples. The values were higher than 0.1 ug/L reporting limit. Chromium was not detected in the associated Method Blank. Chromium in the amount of 0.23 ug/L was also detected in the sample EB-8-8/12/04. Chromium was detected in other field samples in the amounts significantly exceeding the reporting limit.

CADHS ELAP No: 1431 APCL Case Narrative: 04-4044 09/13/2004 Page: 1 1600

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-4044 09/13/2004 Page: 2 1601

			CF	IAIN-OF-	-CUSTO	DY RE	CORD		LABORATORY COPY
GEO INCORPE 22632 GOLDEN SPE	P D R A T E D RINGS DR., SUITE 270 .91765 • (909) 396-7662		6-1455	MW-	22	_			0124
GEOFON'S LAB COORDINATOR LAB	BY BY STANKE BY	LA	LB COORDINATOR'S FA	x 4 1455	LABORATORY	SERVICE ID	LABORATORY CONTA	Chan	MAIL REPORT (COMPANY NAME) COEOFON
ADOUTCT NAME: PRO	09 396 7 DIECT LOCATION 1W-22	<u> </u>	PROJEC	CT NUMBER 12812	LABORATORY 909 59	PHONE 828	LABORATORY TAN		RECIPIENT NAME FORD
PROJECT CONTLACT PRO	0/20 87	29 7	OJECT FAX	6 1455	LABORATORY	address Ma	onolia	Que.	22632 Golden Spring D., 270
PROJECT ADDRESS CIT	ry. STATE AND ZIPCODE	- a	15 Nau	1 SWIT	CITY, STATE	ND ZIPCODE	Λ	91710	Diamond Bon, CA 91765
PRI PROJECT MANAGER	OJECT MANAGER'S	6 7662 FR	ROJECT MANAGER'S FA	 196 1450	5 450	/57/5			
Sample Identifier	Marrit	Date Little	Preserved * of	Conti Level	7 501.6				Comments
1 MW-22-3	W 8.12.0	1 2/9 H	10	III Non	1 1	XX		1	481M3B
2 MW-22-2		Sec	5		XX	XX			
3 HLD-22:7		0833			X	XX			
4 =8-8-8/12/04		00	4		XX	14 14			1044
5 TB-8-8/12/04	4 4		14 2	4 4	- X			 •	7.
6			7			<u> </u>			
7			/	Q. D-	2000_				
8				8.12	.04				
9			/						
10		14				 			OOLER TEMPERATURE UPON RECEIPT
SAMPLES COLLECTED BY 33 + H1	1L COUR	UER AND AIR BILL N	NUMBER: EIVED BY	DATE					S CONDITION LIPON RECEIPT
B. J. Goro		ishof f	Stone	\$120 8120	, , , , , , , , , , , , , , , , , , , 				
- northern great									

Distribution: White - Laboratory (To be returned with Analytical Report); Goldenrod - Project File; Yellow - Project Data Manager

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

September 13, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-4085 and your project: 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Submitted to: GEOFON, Inc. Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

APCL Analytical Report

Service ID #: 801-044085 Collected by: JJ/MM Collected on: 08/16/04

Received: 08/16/04 Extracted: N/A Tested: 08/16-26/04

Reported: 08/27/04

Sample Description: Water

Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

					Analysis	Result	
Component Analyzed	Method	Unit	PQL	DUPE-5-3Q04 04-04085-1	MW-5 04-04085-2	MW-6 04-04085-3	MW-16 04-04085-5
Dilution Factor	•••			1	1	I	10
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	< 4	< 4	3.2J	833

					Analysis Result	
Component Analyzed	Method	Unit	PQL	DUPE-5-3Q04 04-04085-1	MW-5 04-04085-2	MW-6 04-04085-3
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	< 0.01
Dilution Factor				1	1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	11.6	10.9	28.4
VOLATILE ORGANIC COMPOUNDS						
Dilution Factor				1	1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}^{\rm g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
BROMOFORM	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$\mu g/L$	10	< 10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}^{\mu}\mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CHLOROMETHANE	524.2	$_{\mu}^{\mu}$ g/L	0.5	< 0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu\mathrm{g/L}}^{\mu\mathrm{g/-}}$	0.5	< 0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$\mu \mathrm{g}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-4085 ឯ Page: 1 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				А	nalysis Resul	t
Component Analyzed	Method	Unit	PQL	DUPE-5-3Q04	MW-5	MW-6
				04-04085-1	04-04085-2	04-04085-3
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.6
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$\mu g/L$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	1.1
TOLUENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	0.4J
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-4085 b Page: 2 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

	36.3	T7 1:	DO:	Analysis Result					
Component Analyzed	Method	Unit	PQL	MW-15 04-04085-4	MW-16 04-04085-5	TB-9-8/16/04 04-04085-6			
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01	-			
Dilution Factor				1	1	1			
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	12.6	9.1	-			
VOLATILE ORGANIC COMPOUNDS		•							
Dilution Factor				1	1	1			
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
BROMOFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
N-BUTYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	-	< 0.5	< 0.5			
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	_	< 10	< 10			
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	4.0	< 0.5			
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
CHLOROFORM	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	-	5.1	< 0.5			
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
2-CHLOROTOLUENE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
4-CHLOROTOLUENE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	-	< 0.5	< 0.5			
1,2-DIBROMO-3-CHLOROPROPANE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	-	< 0.5	< 0.5			
DIBROMOMETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	_	< 0.5	< 0.5			
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5			
1,3-DICHLOROBENZENE	524.2	μg/L	0.5	_	< 0.5	< 0.5			
1,4-DICHLOROBENZENE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
DICHLORODIFLUOROMETHANE	524.2	$_{\mu \mathrm{g}/\mathrm{L}}$	0.5	_	< 0.5	< 0.5			
1,1-DICHLOROETHANE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
1,2-DICHLOROETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	-	< 0.5	< 0.5			
1,1-DICHLOROETHENE	524.2	μ g/L	0.5	-	1.3	< 0.5			
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	-	< 0.5	< 0.5			
TRANS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
1,2-DICHLOROPROPANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	-	< 0.5	< 0.5			
1,3-DICHLOROPROPANE	524.2	μg/L	0.5	_	< 0.5	< 0.5			
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
CIS-1,3-DICHLOROPROPENE	524.2	μg/L	0.5	-	< 0.5	< 0.5			
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	-	< 0.5	< 0.5			

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 № 04-4085 h Page: 3 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	ult
Component Analyzed	Method	Unit	PQL	MW-15	MW-16	TB-9-8/16/04
		<u>.</u>		04-04085-4	04-04085-5	04-04085-6
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	=	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu} { m g}/{ m L}$	0.5	-	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	=	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	-	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	0.5	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu} { m g}/{ m L}$	0.5	-	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	1.0	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	-	< 0.5	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 Cl-0470 D003 № 04-4085 ឯ Page: 4 of 4

J: Reported between PQL and MDL.

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW 3Q04

APCL Service ID: 04-4085

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/4-12812

For GEOFON, Inc.

APCL Service No: 04-4085

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID
MW-5	04-04085-2
MW-6	04-04085-3
MW-16	04-04085-5
MW-15	04-04085-4
TB-9-8/16/04	04-04085-6
DUPE-5-3Q04	04-04085-1

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level),

200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts ranging from 0.190 ug/L through 0.244 ug/L was detected in the CCBs associated with the samples. The values were higher than 0.1 ug/L reporting limit. Chromium was not detected in the associated Method Blank. Chromium was detected in the field samples in the amounts significantly exceeding the reporting limit.

CADHS ELAP No: 1431 APCL Case Narrative: 04-4085 09/13/2004 Page: 1 1700

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-4085 09/13/2004 Page: 2 1701

GEOFON

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

22632 GOLDEN SPRINGS DR., SUITE 270

Shallow Wells DIAMOND BAB, CA 91765 • (909) 396-7662 • FAX (909) 396-1455

GEOFON'S LAB COORDINATOR		RDINATOR'S		1	LAB COOR	DINATOR'S F	x			LABOR	ATORY	SERVICE	ID.	LABORA	TORY	ONTAC	Т		MAIL RE	PORT (CC	MPANY NA	ME)		
SCORT BIS PARTY	1		276	12		394		575	.										Co=	OF	<u> 04</u>			
PROJECT NAME:	PROJECT	LOCATION	0 10 0 0	<u>ا يې يې</u> مه		PROJE	CT NUMBE	R		LABOR 909	ATORY	PHONE		J-SBORA	TORY F	AX AX		20	RECIPIE	NT NAME	Ford)		•
PROJECT NAME: SPC 66 - 3004	MW.	<u>· 5 </u>	, 6	.13	4.15		<u> 128 i</u>	<u> 12</u>		<u>909</u>	<u>590</u>) /82	28	707	ى:	10	147	0_	100)y!	roro			
PROJECT CONTACT	PROJECT	PHONE NUM	RFR	•	PROJECT F	XX 🚓	, ,	_		LABOR	ATORY	ADDRES	S						ADDRES	550	. 1	_	1	
PROJECT CONTACT J. D. Jone				20872		<u>4 34</u>	6/40	<u> ვვ</u>		137	160	<u> </u>	<u>10</u> 3	nol.	a	<u>/HU</u>	<u>v. </u>		2263	<u> 2 Coe</u>	<u>olden.</u>	Springs	<u>M.,</u>	St. 270
PROJECT ADDRESS		TE AND ZIP			CLIENT	1.	514	۲-	ا ہی۔	CITY, :	STATÉ A	ND ZIPC	ODE ~		211	210	,		CIIY.SI	ALE AND	PS.	, CA	917	ムムー
4800 Oak Chour be.	, las	BACCER'S	a, C.F	1	CO K	lavy	<u>ುಬ</u>	Ω	٧_	Cr	מוֹצ	\circ	ح		7/_/	<u> </u>	_	_	iran	rong	· euc	1 01		ΨO
PROJECT MANAGER	PROJECT	MANAGER'S	~ ~.		PROJECT	ANAGER'S F	AX L		_		ے	1	<i>א</i> דע	\searrow	须		//	//						
Tony Ford		<u> 109 </u>	<u> 396 °</u>	7662	40	390	<u> </u>	<u>کو</u>			71262	/39/		19	\v	~	//	//	//	•				
Sample Identifier		√12°			THE DIE	served to	Cont	Jew.		N. A.								//	/		Com	ments		
1 HW-5		W	8-149	6750	Mose HCJ	5	3		ound	X	X	X	X											
2 HW-6				348	1		IV.			X	X	X.	X							<u> </u>				
3 HW- 136				1212		4	3			X	X	Х	X											
4 MW-15				0919	7	124						Χ	X					H	S/MS	7				
5 TB- 9 - 8/14	104				HCI	2				X											:			
6 Dipe - 5 -30	504	4	4	-	7-v5 Hr. 5	5	4	-	À	Х	X	X	X											
7			 			7												· ·						
8							9.		0.	9	or	b					2	H	36	H				
9					7		8	. 1	6.	94										,				
10		-	1		1																			
SAMPLES COLLECTED BY: ZZZ+	ни	·	COURIE	R AND AIR BI	LL NUMBER:			•			-	•						COOL	ER TEMPER	ATURE UI	PON RECEIP	Γ		
RELINQUISHED BY			1		RECEIVED BY	-			DATE	TIA	1E,		-				SAI	MPLE'S C	ONDITION	UPON REC	CELPT			
0.10. Govo			1 XX	YMA	160	TU		8	16/02	<u>[</u>	1 <u>[</u> c	<u> </u>												
A COMMITTIE			<u> </u>	Mille	m-	<u> </u>		81	16/01	151	5													
1000								<u> </u>																
																			·					
Die	stributio	n Whi	te - Lah	oratory (To be re	turned v	vith An	alvti	ical R	enort)	: Go	ldenr	od -	Proie	et Fil	e: Y	ellow	- Pro	oject Da	ata Ma	anager			

Applied Physics & Chemistry Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel. (909) 590-1828 Fax (909) 590-1498

September 13, 2004

GEOFON, Inc.

Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Dear Tony,

This package contains samples in our Service ID 04-4096 and your project: 4-12812 JPL-GW-3Q04.

Enclosed please find:

- (1) Original analytical report.
- (2) Original Chain of Custody.
- (3) One diskette containing EDD deliverable.
- (4) One original Level C Data Package Deliverable.

If anything is missing or you have any questions, please feel free to contact me.

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

Submitted to: GEOFON, Inc. Attention: Tony Ford

22632 Golden Spring Dr Ste 270

Diamond Bar CA 91765

Tel: (909)396-7662 Fax: (909)396-1455

Service ID #: 801-044096 Collected by: JJ/MM/TM Collected on: 08/17/04

Received: 08/17/04 Extracted: N/A

Tested: 08/17-26/04 Reported: 08/27/04

Sample Description: Water

Project Description: 4-12812 JPL GW-3Q04

Analysis of Water Samples

				Analysis	Result
Component Analyzed	Method	Unit	PQL	DUPE-6-3Q04 04-04096-1	MW-8 04-04096-2
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	< 0.01
Dilution Factor		O,		1	1
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	23.8	9.8
Dilution Factor		,,		1	1
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	25.5	9.4
VOLATILE ORGANIC COMPOUNDS					
Dilution Factor				1	1
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
BROMOBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
BROMODICHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
BROMOFORM	524.2	$_{\mu \mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5
BROMOMETHANE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5
N-BUTYLBENZENE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5
SEC-BUTYLBENZENE	524.2	$_{\mu}^{ m g/L}$	0.5	< 0.5	< 0.5
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
2-BUTANONE	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10
CARBON TETRACHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
CHLORODIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
CHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.4	< 0.5
CHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
2-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
DIBROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,2-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,3-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
DICHLORODIFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,1-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1	< 0.5
1,2-DICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,1-DICHLOROETHENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
CIS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 ₹ 04-4096 b

Page: 1 of 4

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis	Result
Component Analyzed	Method	Unit	PQL	DUPE-6-3Q04	MW-8
				04-04096-1	04-04096-2
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
1,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,3-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
2,2-DICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,1-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	<1	<1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}$ g/L	10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	1.8	< 0.5
TOLUENE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	16.6	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5
112TRICHLORO-122TRIFLUOROETHANE	524.2	$_{\mu}{ m g}/{ m L}$	0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	μg/L	0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}$ g/L	0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94 CI-0470 D003 N 04-4096 N Page: 2 of 4

13760 Magnolia Avc. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result					
Component Analyzed	Method	Unit	PQL	MW-10 04-04096-3	MW-13 04-04096-4	TB-10-8/17/04 04-04096-5			
CHROMIUM (VI)	7196	mg/L	0.01	< 0.01	0.011	-			
Dilution Factor				1	1	1			
CHROMIUM	200.8	$_{\mu}\mathrm{g/L}$	0.1	24.2	26.1	-			
Dilution Factor		•		1	6	1			
PERCHLORATE	314.0	$_{\mu}\mathrm{g/L}$	4	25.3	296	_			
VOLATILE ORGANIC COMPOUNDS									
Dilution Factor				1	1	1			
BENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOCHLOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMODICHLOROMETHANE	524.2	$_{\mu} { m g}/{ m L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOFORM	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
BROMOMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
N-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
SEC-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
TERT-BUTYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
2-BUTANONE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	10	< 10	< 10	< 10			
CARBON TETRACHLORIDE	524.2	$\mu g/L$	0.5	< 0.5	2.0	< 0.5			
CHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
CHLORODIBROMOMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
CHLOROFORM	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.3	3.5	< 0.5			
CHLOROMETHANE	524.2	$\mu \mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
2-CHLOROTOLUENE	524.2	$_{\mu\mathrm{g}/\mathrm{L}}$	0.5	< 0.5	< 0.5	< 0.5			
4-CHLOROTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,2-DIBROMO-3-CHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,2-DIBROMOETHANE (EDB)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
DIBROMOMETHANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
1,2-DICHLOROBENZENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
1,3-DICHLOROBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5			
1,4-DICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
DICHLORODIFLUOROMETHANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
1,1-DICHLOROETHANE	524.2	μg/L	0.5	0.9	< 0.5	< 0.5			
1,2-DICHLOROETHANE	524.2	$_{\mu}^{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,1-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
CIS-1,2-DICHLOROETHENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
TRANS-1,2-DICHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5			
1,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
1,3-DICHLOROPROPANE	524.2	$\mu g/L$	0.5	< 0.5	< 0.5	< 0.5			
2,2-DICHLOROPROPANE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			
1,1-DICHLOROPROPENE	524.2	μg/L	0.5	< 0.5	< 0.5	< 0.5			

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

					Analysis Res	sult
Component Analyzed	Method	Unit	PQL	MW-10 04-04096-3	MW-13 04-04096-4	TB-10-8/17/0- 04-04096-5
CIS-1,3-DICHLOROPROPENE	524.2	$_{\mu\mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
TRANS-1,3-DICHLOROPROPENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ETHYLBENZENE	524.2	$_{\mu \mathrm{g/L}}$	0.5	< 0.5	< 0.5	< 0.5
HEXACHLOROBUTADIENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
ISOPROPYLBENZENE (CUMENE)	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
P-ISOPROPYLTOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYLENE CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
METHYL-T-BUTYL ETHER (MTBE)	524.2	$_{\mu}\mathrm{g/L}$	1	< 1	<1	< 1
4-METHYL-2-PENTANONE (MIBK)	524.2	$_{\mu}\mathrm{g/L}$	10	< 10	< 10	< 10
NAPHTHALENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
N-PROPYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
STYRENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2,2-TETRACHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TETRACHLOROETHENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	1.5	0.9	< 0.5
TOLUENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRICHLOROBENZENE	524.2	$_{\mu\mathrm{g}}/\mathrm{L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,1-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLOROETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	524.2	$\mu g/L$	0.5	14.6	15.4	< 0.5
TRICHLOROFLUOROMETHANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,3-TRICHLOROPROPANE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,1,2-TRICHLORO-1,2,2-TRIFLUORO	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,2,4-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
1,3,5-TRIMETHYLBENZENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
VINYL CHLORIDE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
O-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5
M/P-XYLENE	524.2	$_{\mu}\mathrm{g/L}$	0.5	< 0.5	< 0.5	< 0.5

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

CRDL: Contract Required Detection Limit

N.D.: Not Detected or less than the practical quantitation limit.

"-": Analysis is not required.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

Laboratory Director

Applied P & CH Laboratories

CADHS ELAP No.: 1431 NFESC Approved since 11/01/94

J: Reported between PQL and MDL.

Level C Data Package Deliverables

General Information

Project: 4-12812 JPL GW-3Q04

APCL Service ID: 04-4096

Applied P & CH Laboratories 13760 Magnolia Ave. Chino, CA 91710 Telephone (909)590-1828 Fax (909)590-1498

13760 Magnolia Ave., Chino CA 91710Tel: (909) 590-1828 Fax: (909) 590-1498

Case Narrative

Project: JPL GW-3Q04/4-12812

For GEOFON, Inc.

APCL Service No: 04-4096

1. Sample Identification

The sample identifications are listed in the following table:

GEOFON, Inc. Sample ID	APCL Sample ID
MW-8	04-04096-2
MW-10	04-04096-3
MW-13	04-04096-4
TB-10-8/17/04	04-04096-5
DUPE-6-3Q04	04-04096-1

2. Analytical Methodology

Samples are analyzed by EPA methods

524.2 (Volatile Organic Compounds), 7196A (Chromium (VI)), 314.0 (Perchlorate, low level), 200.8 (Chromium Analyte by ICPMS),

3. Holding Time

All samples were extracted, digested and analyzed within the holding times defined by the appropriate EPA methods of the analyses.

4. Preservation

All samples were preserved and stored according to the appropriate EPA methods.

5. Tele-log

None

6. Anomaly

(1) 200.8:

Chromium in the amounts ranging from 0.190 ug/L through 0.244 ug/L was detected in the CCBs associated with the samples. The values were higher than 0.1 ug/L reporting limit. Chromium was not detected in the associated Method Blank. Chromium was detected in the field samples in the amounts significantly exceeding the reporting limit.

CADHS ELAP No: 1431 APCL Case Narrative: 04-4096 09/12/2004 Page: 1 2000

"I certify that these data are technically accurate, complete, and in compliance with the terms and conditions of the contract, for other than the conditions detailed above. Release of the data contained in the hardcopy data package and its electronic data deliverable submitted on diskette had been authorized by the Laboratory Manager or her/his designee, as verified by the following signature."

Respectfully submitted,

Regina Kirakozova

Associate QA/QC Director

Applied P & CH Laboratories

CADHS ELAP No: 1431 APCL Case Narrative: 04-4096 09/12/2004 Page: 2 2 0 0 1

	Œ	E			F	=(N	
=	ı N	C 0	1 B	_	$\overline{}$	-	Δ	т	F	

CHAIN-OF-CUSTODY RECORD

LABORATORY COPY

22632 GOLDEN SPRINGS DR., SUITE 270

Shallow Wello

0126

		390-7002 • PAX (909			1			-
GEOFON'S LAB COORDINATOR CAB COORDINATOR'S PHONE		LAB COORDINATOR'S FAX		LABORATORY SERVI	1 . /	RY CONTACT	MAIL REPORT (COMPANY NAME)	
Scott Burnu	40939	6 7662	4093	196 1455		Ken	ry Chan	C=OFON
JPC 6W-3004	PROJECT LOCATION	8,10+16	PRO	-12812	409 590	1828 9 09	590 1498	ADDRESS O Sa
PROJECT CONTACT	PROJECT PHONE NUM	BER	PROJECT FAX		LABORATORY ADDR	ECC		
T. D. Jones 914 920 8729		909 396 1455		13760 Magnalia Aue.		ia Ave.	22632 Golden Springs D., 270	
PROJECT ADDRESS	CITY, STATE AND ZIPC	ODE	CLIEST	•	CITY. STATE AND ZI	PCODE O		CITY STATE AND ZIPCODE
4800 OQU Corone Dr.	Hasaden	a. C.A	US Navy	1 SHDIV	Chino	, CA		Diamond Bar, CA 91765
	DOVIECT MANAGEDIC		PROJECT MANAGERICS	<i>(</i> 1) .	1		5///	
Tony Ford	909	396,766	<u>. 90939</u>	16 1455	Analyses VC		2///	
ι ι α			\ \dots	\ \(\text{is.} \ \ \text{in.} \ \)	Arall Y		9///	
Sample Identifier	Mar	Date (1)	rie Preserved	COM CLEVE	Programme A	New Section	////	Comments
		B.16.04	130 (* * * * * * * * * * * * * * * * * *			'Y Y /	+	22.1
1 Hw 7 19 8.17		D.17. 101	Hu 5 5	TI Home	 	- X -		anul enty Q.D. Jan 5.17.04
₂ Mw-8	- ω	8-17-4 014	Hole Hub-3	77 1				
2	- ω	D _{A1} .		IV	X X X			
3 MW-10		1 35		皿	X X >	√ ×		
4 MW-13		6750	4 4		XXX	. X	-	1000
TB-10-8/17	104		 	+	 		+-+-	400
, , , , , , , , , , , , , , , , , , , ,			<u> </u>					
6 Dupe-6-30	DY AT	 	H41 5	1 4	$ X \times X $			
			None	- V		 -	 	· · · · · · · · · · · · · · · · · · ·
7				7				
8				10	0. 4	me	-	
				8.				
9			$\perp \perp \perp$	0. /	7.04			
10			4	 	 -	- - -	<u>- </u>	
<u> </u>	<u> </u>	COURIER AND AIR BIL	I NIDER	1				XOLER TEMPERATURE UPON RECEIPT
SAMPLES COLLECTED BY 33 M	ECEIVED BY	DATE	TIME			S CONDITION UPON RECEIFT		
a. D. One		I Was U.S.	ALL.	Sx 17-114			JANGE	
Like blat				5-17-04 5-17-04	11:20			
		- J - T		——————————————————————————————————————	1			
		1 7			 			
Dis	tribution: White	e - Laboratory (To be returned v	with Analytical R	eport); Golder	rod - Project	File: Yellow - F	Project Data Manager